0 Non - commutative Symplectic Geometry , Quiver varieties
نویسنده
چکیده
Quiver varieties have recently appeared in various different areas of Mathematics such as representation theory of Kac-Moody algebras and quantum groups, instantons on 4-manifolds, and resolutions Kleinian singularities. In this paper, we show that many important affine quiver varieties, e.g., the Calogero-Moser space, can be imbedded as coadjoint orbits in the dual of an appropriate infinite dimensional Lie algebra. In particular, there is an infinitesimally transitive action of the Lie algebra in question on the quiver variety. Our construction is based on an extension of Kontsevich’s formalism of ‘non-commutative Symplectic geometry’. We show that this formalism acquires its most adequate and natural formulation in the much more general framework of P-geometry, a ‘non-commutative geometry’ for an algebra over an arbitrary cyclic Koszul operad.
منابع مشابه
Non-commutative Symplectic Geometry, Quiver Varieties, and Operads
Quiver varieties have recently appeared in various different areas of Mathematics such as representation theory of Kac-Moody algebras and quantum groups, instantons on 4-manifolds, and resolutions Kleinian singularities. In this paper, we show that many important affine quiver varieties, e.g., the Calogero-Moser space, can be imbedded as coadjoint orbits in the dual of an appropriate infinite d...
متن کاملay 2 00 0 Non - commutative Symplectic Geometry , Quiver varieties , and Operads . Victor Ginzburg to Liza
Quiver varieties have recently appeared in various different areas of Mathematics such as representation theory of Kac-Moody algebras and quantum groups, instantons on 4-manifolds, and resolutions Kleinian singularities. In this paper, we show that many important affine quiver varieties, e.g., the Calogero-Moser space, can be imbedded as coadjoint orbits in the dual of an appropriate infinite d...
متن کاملGeometric Methods in Representation Theory Fock Space Representations Fock Space Representations of U Q ( Sl N )
Articles-Karin BAUR: Cluster categories, m-cluster categories and diagonals in polygons-Ada BORALEVI: On simplicity and stability of tangent bundles of rational homogeneous varieties-Laurent EVAIN: Intersection theory on punctual Hilbert schemes-Daniel JUTEAU, Carl MAUTNER and Geordie WILLIAMSON: Perverse sheaves and modular representation theory-Manfred LEHN and Christoph SORGER: A symplectic ...
متن کاملar X iv : 0 80 4 . 32 25 v 2 [ m at h . SG ] 3 J ul 2 00 9 STABILITY FUNCTIONS
In this article we discuss the role of stability functions in geometric invariant theory and apply stability function techniques to various types of asymptotic problems in the Kähler geometry of GIT quotients. We discuss several particular classes of examples, namely, toric varieties, spherical varieties and the symplectic version of quiver varieties.
متن کاملQuiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac–Moody Algebras, and Painlevé Equations
To a finite quiver equipped with a positive integer on each of its vertices, we associate a holomorphic symplectic manifold having some parameters. This coincides with Nakajima’s quiver variety with no stability parameter/framing if the integers attached on the vertices are all equal to one. The construction of reflection functors for quiver varieties are generalized to our case, in which these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000